趋势 | 2019年人工智能行业的25大趋势(二)
发布时间:2019-09-05 00:26

原标题:趋势 | 2019年亿宝娱乐官网人工智能行业的25大趋势(二)

四、合成数据集用以解决AI的数据依赖

16 预测性维护

从制造商到设备保险公司,AI-IIoT可以在在故障损害发生之前,提出防范措施。现场和工厂设备会产生大量的数据,然而,未预料到的设备故障是制造业停机的主要原因之一。预测设备或单个部件何时失效将使资产保险公司和制造商受益。

在预测性维护中,传感器和智能摄像机收集来自机器的连续数据,如温度、压力等。实时数据的数量和变化形式使机器学习成为IIoT不可分割的组成部分。随着时间的推移,算法可以在故障发生之前预测可能出现的隐患。

随着工业传感器成本的降低、机器学习算法的进步,以及对边缘计算的推动,预测性维护会更加广泛。

17 后台自动化

人工智能正在推动管理工作走向自动化,但数据的不同性质和格式使其成为一项具有挑战性的任务。根据行业和应用程序的不同,自动化“后台任务”的挑战可能是独一无二的,例如,手写的临床笔记对自然语言处理算法来说就是一个独特的挑战。

机器人过程自动化(RPA)一直是热门话题,虽然并非所有的机器人过程自动化都基于机器学习,但许多都开始将图像识别和语言处理集成到它们的解决方案中。

18 综合训练数据

对于训练人工智能算法来说,访问大型的、标记的数据集是必要的,合成数据集可能会成为解决瓶颈问题的关键,人工智能算法依赖数据,当一些类型的现实世界数据不易被访问时,合成数据集的用武之地就体现出来,一个有趣的新兴趋势是使用AI本身来帮助生成更“逼真”的合成图像来训练AI,例如,英伟达使用生成对抗网络(GAN)来创建具有脑肿瘤的假MRI图像。

GAN被用于“增强”现实世界数据,这意味着AI可以通过混合现实世界和模拟数据进行训练,以获得更大更多样化的数据集。此外,机器人技术是另一个可以从高质量合成数据中获益的领域。

19 网络优化

人工智能正在开始改变电信,电信网络优化是一套改进延迟、带宽、设计或架构的技术——能以有利方式增加数据流的技术,对于通信服务提供商来说,优化可以直接转化为更好的客户体验,除了带宽限制之外,电信面临的最大挑战之一是网络延迟,像手机上的AR / VR等应用,只有极低的延迟时间才能达到最佳的功能。

电信运营商也在准备将基于AI的解决方案集成到下一代无线技术中,即5G,三星收购了基于AI的网络和服务分析初创公司Zhilabs,为5G时代做准备,高通认为人工智能边缘计算是其5G计划的重要组成部分(边缘计算可减少带宽限制并与云进行频繁通信,这是5G的主要关注领域)。

20 网络威胁狩猎

对网络攻击做出反应已经不够了,使用机器学习主动“搜寻”威胁正在网络安全中获得动力。顾名思义,威胁搜寻是主动寻找恶意活动的做法,而不仅仅是在发生警报或违规后做出反应,狩猎开始于对网络中潜在弱点的假设,以及手动和自动化工具,以在连续的迭代过程中测试假设。

展开全文

网络安全中庞大的数据量使机器学习成为流程中不可分割的一部分,威胁狩猎很可能会获得更多的动力,然而它也面临着自身的一系列挑战,比如应对不断变化的动态环境和减少误报。

五、训练算法、指纹追踪、人工智能防范假货

21 电子商务搜索

对搜索词的上下文理解正在走出“实验阶段”,但要广泛采用搜索词还有很长的路要走,当使用电子商务搜索来显示相关结果时,使用适当的元数据来描述产品是一个起点。

但是仅仅描述和索引是不够的,许多用户用自然语言搜索产品(比如“没有纽扣的洋红色衬衫”),或者不知道如何描述他们在寻找的商品,这使得电子商务搜索的自然语言成为一个挑战。

22 汽车索赔处理

保险公司和初创公司开始使用人工智能来计算车主的“风险得分”,分析事故现场的图像,并监控驾驶员的行为,Ant Financial在其“事故处理系统”中使用深度学习算法进行图像处理,过去,车主或司机会把他们的车送到“理算师”那里,理算师负责检查车辆的损坏情况,并记录下详细情况,然后将这些信息发送给汽车保险公司。

如今,图像处理技术的进步使得人们可以拍下这辆车的照片并将其上传,神经网络对图像进行分析,实现损伤评估的自动化,另一种方法是对驾驶员进行风险分析,从而影响汽车保险的实际定价模型。

23 防伪

假货越来越难被发现,网购使得购买假货比以往任何时候都容易。为了反击,品牌和典当商开始尝试人工智能,在网络世界和现实世界两条战线上与假货作战。

不过,网上假冒伪劣产品的范围和规模庞大复杂,造假者使用与原始品牌列表非常相似的关键词和图片,在假冒网站上销售假货,在合法市场上销售假货,在社交媒体网站上推广假货,随着“超级假货”或“aaa假货”的兴起,用肉眼分辨它们几乎变得不可能。

现在,建立一个假冒伪劣商品的数据库,提取其特征,并训练人工智能算法来分辨真伪,虽是一个繁琐的过程,但对于奢侈品牌和其他高风险零售商来说非常有必要,下一步的解决方案还可能是在实体商品上识别或添加独特的“指纹”,并通过供应链对其进行跟踪。

24 零售

走进一家商店,挑选你想要的东西,然后走出去,这几乎“感觉”就像在行窃,人工智能可以杜绝真正的盗窃行为,并让免结账手续零售变得更加普遍。

盗窃一直是美国零售商的一大痛点,然而,当你掌握进出商店的人,并自动向他们收费时,有人入店行窃的可能性就会降到最低。其余一些需要考虑的事情是如何利用建筑空间,特别是在拥挤的超市,确保摄像机被最佳地放置来追踪人和物品。

在短期内,问题将归结为部署成本和由潜在技术故障造成的库存损失成本,以及零售商能够承担这些成本和风险的程度。

25 农作物监测

无人机可以为农民绘制农田地图,利用热成像技术监测湿度,识别虫害作物并喷洒杀虫剂。

初创公司正专注于为第三方无人机捕获的数据添加分析。还有人使用计算机视觉使地面上的农业设备变得更智能,按照需要喷洒个别作物,就会减少对非选择性除草剂的需求,而非选择性除草剂会杀死附近的一切,精确喷洒意味着减少除草剂和杀虫剂的使用量。

在实地调查之外,利用计算机视觉分析卫星图像提供了对农业实践的宏观理解,地理空间数据可以提供关于全球作物分布模式和气候变化对农业影响的信息。

更多精彩,敬请关注硅谷洞察官方网站(http://www.svinsight.com)